Nano-Burst/Delay Generator

High-lights

- 10/20/30 Independent channel(customizable)
- 10ns time-resolution
- Buffer isolated output
- 1GB instruction memory length
- USB communication
- User interface in LabVIEW/Python/MATLAB

Applications

- Precise triggering of control system
- Laser switching/triggering
- Ultrasound, radar and medical imaging
- Data bus emulation
- Jitter tolerance testing
- Semiconductor characterization

About product description...

The Pulse Generators offer an advanced and versatile solution for high-amplitude positive pulses through 32 output channels, which can be independently controlled via a convenient PC interface. The outputs of the generators exhibit exceptional characteristics, such as fast edge rates, smooth transitions, and minimal overshoot and ringing. Additionally, the generators are designed to work with a 50 Ω impedance, yet they can safely drive any load ranging from a short circuit to an open circuit.

Due to the generators' intelligence and versatility, they are widely used as a robust timing engine for applications requiring sophisticated pulse sequences and output patterns, precision timing of intervals that vary widely, and complex system control. The generators possess a range of powerful program-flow features and can generate variable output rates spanning from nanoseconds to days per interval.

In summary, the Pulse Generators represent an advanced solution for demanding applications requiring high precision, exceptional versatility, and intelligent system control.

Real-time hardware series-

Nano-Burst/Delay Generator

Key Specifications

Model	Nano-Burst
No. of Channel	32
Clock Frequency	20MHz
Clock stability	100ppm
Shortest pulse	10ns
Pulse resolution	1ns
Output Voltage	5V/3.3V
Output Impedance	50Ω
External clock input	100MHz/AC Coupled
External clock impedance	50Ω
Triggering	Software and Hardware
Trigger waveform	ΠL
External trigger port	2
Programming language	LabVIEW/Python/MATLAB
Communication interface	USB
Instruction memory length	512MB
Connector	BNC/SMA
Output type	Buffer Isolated output